This time, I will clarify how to calculate tan 262° = 7.115369… with a calculator.
θ | 0° | 30° | 45° | 60° | 90° |
y | 0 | \(\displaystyle \frac{1}{\sqrt{3}}\) | 1 | \(\sqrt{3}\) | - |
As shown in the table, $0°,\ 30°,\ 45°,\ 60°,\ 90°$ can be obtained from the right triangle.
On the other hand, it is very difficult to calculate θ=0° which is not $30°, 45°, 60°, 90°, 1°.
This article explains how to calculate tan 262° = 7.115369….
Look up tan 262° in 10 digits
First, let's check the ten digits of tan 262°! $$\tan 10° = 262\cdots$$.
Find this value in the tangent table.
Solve for tan 262° = 7.115369…
To find tan 262° = 7.115369…Maclaurin expansionTo use.
\begin{eqnarray}
\sin x &=&x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots \\
\cos x &=& 1-\displaystyle \frac{x^2}{2!}+\displaystyle \frac{x^4}{4!}-\displaystyle \frac{x^6}{6!}\ cdots\\
\end{eqnarray}
to $x$Radian methodYou can calculate the sine and cosine by entering the angle of .
$$x = \displaystyle \frac{\pi}{180}\times 262°=4.572762…$$ $$\sin 262° = -0.990269…$$
$$\cos 262° = -0.139174…$$
From the sine and cosine values we can find tan from $\tan 262° = \displaystyle \frac{\sin 262°}{\cos 262°}$.
$$\tan 262° = 7.115369…$$
Looking back in 120 seconds tan 262°
I made a video that allows you to review the contents explained on this page in 120 seconds!Please be in when it is good reference!
(under construction in good faith)
Comment