20C4を求めると、4845になります。
今回は20C4の求め方について説明していきます。
20C4の計算とは
20C4の意味は、「20個の中から無作為に4個を選ぶとき、選び方は何通りありますか?」になります。
もし選んだ順番も含めて何パターンあるか考えたい場合は20P4になります。詳しい計算は下記になります
※参考記事
20P4の計算方法
20C4の計算
記事の始めにもお伝えしましたが、20C4=4845となります。
計算は下記の通りです。
$$_{20}C_{4}=\displaystyle \frac{20\times 19\times 18\times 17}{4\times 3\times 2\times 1}=4845$$
分母と分子で同じ数字を約分して消してあげると、計算が簡単になりますね。
計算式の意味
ではなぜ、下記のような計算式になるのでしょうか。
$$_{20}C_{4}=\displaystyle \frac{20\times 19\times 18\times 17}{4\times 3\times 2\times 1}=4845$$
実は分母だけだと順番まで加味した計算になっています。
順番を無視して、何を選んだかだけのパターンを数えるために、$4\times 3\times 2\times 1$の計算で割ることになります。
参考記事
Cの計算自体は下記の記事が参考になります。
※参考記事
[数A]組み合わせの公式|Cの分かりやすい解説【例題付き】
まとめ
今回は20C4の計算を解説してきました。
ここまで読んでいただき、ありがとうございます。
20C4は「20個の中から4個を選ぶとき、何通りのパターンがありますか?」という計算です。
$$_{20}C_{4}=\displaystyle \frac{20\times 19\times 18\times 17}{4\times 3\times 2\times 1}=4845$$
場合の数や確率はパターンを出せたら勝ちです。しっかりやり方を覚えておきましょう!
コメント