【集中力】大幅アップの勉強タイマー

【組み合わせ】3C2の求め方【簡単】

3C2を求めると、3になります。

今回は3C2の求め方について解説していきます。

目次

3C2の計算とは

3C2の意味は、「3個の中からランダムに2個を選ぶとき、選び方は何通りありますか?」になります。

もし選んだ順番も含めて何パターンあるか考えたい場合は3P2になります。詳しい計算は下記になります

※参考記事
3P2の計算方法

3C2の計算

冒頭でもお伝えしましたが、3C2=3になります。

計算は下記の通りです。

$$_{3}C_{2}=\displaystyle \frac{3\times 2}{2\times 1}=3$$

分母と分子で同じ数字を約分して消してあげると、計算が簡単になりますね。

計算式の意味

ではなぜ、下記のような計算式になるのでしょうか。

$$_{3}C_{2}=\displaystyle \frac{3\times 2}{2\times 1}=3$$

実は分母だけだと順番まで加味した計算になっています。

順番を無視して、何を選んだかだけのパターンを数えるために、$2\times 1$の計算で割ることになります。

参考記事

Cの計算自体は下記の記事が参考になります。

※参考記事
[数A]組み合わせの公式|Cの分かりやすい解説【例題付き】

まとめ

今回は3C2の計算を解説してきました。

ここまで読んでいただき、ありがとうございます。

3C2は「3個の中から2個を選ぶとき、何通りのパターンがありますか?」という計算です。

$$_{3}C_{2}=\displaystyle \frac{3\times 2}{2\times 1}=3$$

場合の数や確率はパターンを出せたら勝ちです。しっかりやり方を覚えておきましょう!

コメント

コメントする

目次