スポンサーリンク

x^2 + 34x – 440の因数分解をたすきがけで解くやり方【簡単】

本解説ではたすきがけで$x^2 + 34x – 440 = (x + 44)(x – 10)$を求めるやり方を解説していきます!

たすきがけの手法

$x^2 + 34x – 440$をたすきがけで因数分解する方法は、簡単にいうと、たし算すると34、掛け算すると-440になる2つの数字の組み合わせを探すことです。

先に結論をいうと、44と-10です。
44と-10は足すと$44+-10=34$、掛けると$44\times-10=-440$となりますね。

つまり、$x^2 + 34x – 440 = (x + 44)(x – 10)$と計算することができるのです。

たすきがけに使う図

ただ、足し算すると34、かけ算して-440になる2つの数字を発見するのが難しい・・・

そこで、たすきがけは下記の図を書くことで2つの数字を見つけます。

(x + 44)(x - 10)の因数分解をたすきがけで解く方法

図ように、最初に掛けて-440になるペアの数字を探します。
かけ算すると-440になる数字の組み合わせを足してみて、34になるか確認するやり方ですね。

もし、足した数が34ではなかったら、掛けたら-440になる別のペアを求めましょう。
ペアを見つけて計算を試すのを繰り返すことで、掛けて-440、合計すると34になる44と-10を見つけて因数分解するのです!

$$x^2 + 34x – 440 = (x + 44)(x – 10)$$

たすきがけクイズ!!

Q1

□に入る数字は?

$x^2+4x+3=(x+□)(x+1)$

3

8

たすきがけを勉強したいあなたへ

たすきがけの詳しいやり方は下記の記事で紹介しているので、よかったら参考にしてください!

https://rikeinvest.com/math/shiki/tasuki/

タイトルとURLをコピーしました