スポンサーリンク

x^2 + 47x + 90の因数分解をたすきがけで解く方法【すぐわかる】

このページではたすきがけで$x^2 + 47x + 90 = (x + 45)(x + 2)$を因数分解する方法を解説します!

たすきがけの手法

$x^2 + 47x + 90$をたすきがけで因数分解する方法は、簡単にいうと、たして47、積を取ると90になる数字の組み合わせを求めることです。

最初に結論をいうと、45と2です。
45と2は足すと$45+2=47$、掛けると$45\times2=90$となりますね。

つまり、$x^2 + 47x + 90 = (x + 45)(x + 2)$と求めることができるのです。

図を使ったたすきがけ

しかし、足して47、積を取ると90になる2つの数字を見つけるのが難しい・・・

そこで、たすきがけは下のような図を使って因数分解します。

(x + 45)(x + 2)の因数分解をたすきがけで解く方法

この図のように、最初に掛けて90になる2つの数字を探します。
積を取ると90になる数字の組み合わせを足してみて、47になるかチェックするやり方ですね。

もし、足した数が47ではなかったら、掛けたら90になる別の数字を求めましょう。
ペアを見つけて計算を試すのを繰り返すことで、掛けて90、たして47になる45と2を見つけて因数分解するのです!

$$x^2 + 47x + 90 = (x + 45)(x + 2)$$

たすきがけクイズ!!

Q1

□に入る数字は?

$x^2+4x+3=(x+□)(x+1)$

3

8

たすきがけを勉強したいあなたへ

たすきがけの詳しいやり方は下記の記事で紹介しているので、よかったら参考にしてください!

https://rikeinvest.com/math/shiki/tasuki/

タイトルとURLをコピーしました