x^2 + 46x – 47の因数分解をたすきがけで解く公式【1分でわかる】

スポンサーリンク

このページではたすきがけで$x^2 + 46x – 47 = (x + 47)(x – 1)$を計算する手法を解説します!

因数分解をたすきがけでする手法

$x^2 + 46x – 47$をたすきがけで因数分解する解き方は、簡単にいうと、足し算すると46、掛け算すると-47になる2つの数字の組み合わせを求めることです。

最初に結論をいうと、47と-1です。
47と-1は足すと$47+-1=46$、掛けると$47\times-1=-47$となりますね。

つまり、$x^2 + 46x – 47 = (x + 47)(x – 1)$と因数分解することができるのです。

図を使うたすきがけする

たすきがけの問題は、足して46、かけ算して-47になる2つの数字を探すのが難しい・・・

そこで、たすきがけは下記のような図を使って計算します。

(x + 47)(x - 1)の因数分解をたすきがけで解く方法

図ように、最初にかけ算すると-47になる2つの数字の組み合わせを探します。
掛け算すると-47になる数字の組み合わせを足してみて、46になるか確認する方法ですね。

もし、足した数が46にならなかったら、掛けたら-47になる別の組み合わせを求めましょう。
かけ算と足し算を繰り返すことで、積を取ると-47、和をとると46になる47と-1を見つけて因数分解するのです!

$$x^2 + 46x – 47 = (x + 47)(x – 1)$$

因数分解にもっと詳しく!

因数分解TOPへ

たすきがけクイズ!!

Q1

□に入るのは?

$x^2+4x+3=(x+□)(x+1)$

3

8

タイトルとURLをコピーしました