スポンサーリンク

x^2 + 27x – 940の因数分解をたすきがけで解く手法【すぐわかる】

本解説ではたすきがけで$x^2 + 27x – 940 = (x + 47)(x – 20)$を因数分解する方法を説明していきます!

たすきがけの方法

$x^2 + 27x – 940$をたすきがけで因数分解する解き方は、簡単にいうと、和をとると27、かけ算すると-940になる2つの数字を見つけ出すのと同じです。

先に答えを言ってしまうと、47と-20です。
47と-20は足すと$47+-20=27$、掛けると$47\times-20=-940$となりますね。

つまり、$x^2 + 27x – 940 = (x + 47)(x – 20)$と因数分解することができるのです。

図を使ったたすきがけ

たすきがけの問題は、和をとると27、積を取ると-940になる2つの数字を発見するのが難しい・・・

そこで、たすきがけは下のような図を使って因数分解します。

(x + 47)(x - 20)の因数分解をたすきがけで解く方法

この図の通り、最初にかけ算して-940になるペアの数字を探します。
掛け算すると-940になる数字の組み合わせを足してみて、27になるか計算するやり方ですね。

もし、足した数が27じゃない場合は、掛けたら-940になる別の組み合わせを求めましょう。
掛け算とたし算を繰り返すことで、かけて-940、和をとると27になる47と-20を見つけて因数分解するのです!

$$x^2 + 27x – 940 = (x + 47)(x – 20)$$

たすきがけクイズ!!

Q1

□に入る数字は?

$x^2+4x+3=(x+□)(x+1)$

3

8

たすきがけを勉強したいあなたへ

たすきがけの詳しいやり方は下記の記事で紹介しているので、よかったら参考にしてください!

https://rikeinvest.com/math/shiki/tasuki/

タイトルとURLをコピーしました