それでは、sin 297° = -0.891007…を電卓で計算する方法について解説していきます。
三角関数表の中のサイン(sin)の表に焦点を絞って、値の計算の仕方を説明していきます。
サインの表とは下ののような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
数学の解説などの最後にある三角関数表(サイン表)ですが、どうやって求めたのでしょうか。
この記事では、sin297°の求め方説明です。
$$\sin 297°=-0.891007…$$
10位までsin 297°を調べる
まずは、sin 297°を10桁書いてみましょう!$$\sin 297° = -0.8910065242 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin297°の値を解く
三角関数表を使わずにsin297°の値を解く方法はとても複雑なものを除けば3つあります。
1の手法は、定規を使うため正確な値を算出できず、答えは近似値になります。
2のやり方だと、導出過程が大変になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使うやり方を紹介します。
マクローリン展開でsin297°を求める
マクローリン展開より、下記の式で\(\sin x\)を求めることができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)から\(\sin x\)の値を明らかにすることができるのです。
マクローリン展開を知らなくてもても、式だけ分かれば大丈夫ですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を入れる必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 297°$$
この式を計算すると、
$弧度法=5.183627…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 297°\)を求められます。
$$\sin 297° = -0.891007…$$
コメント