三角関数表のタンジェント表におけるtan8°の解き方

この記事では、tan 8° = 0.14054…を算出する手法について説明します。

θ30°45°60°90°
y0\(\displaystyle \frac{1}{\sqrt{3}}\)1\(\sqrt{3}\)

この表のように$0°,\ 30°,\ 45°,\ 60°,\ 90°$は具体的な値が計算できます。
ですが、中途半端なθ=1°だとタンジェントの計算が困難です。

そのため、tan 8° = 0.14054…となる計算について紹介します。

スポンサーリンク

10位目までtan 8°を書いてみる

まずは、tan 8°を10桁確認してみましょう!$$\tan 8° = 0.1405408347\cdots$$となります。
タンジェントの表に記載されたこの値を求めていきましょう。

tan 8° = 0.14054…を算出する

tan 8° = 0.14054…を計算するためにマクローリン展開を駆使します。

\begin{eqnarray}
\sin x &=&x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\
\cos x &=& 1-\displaystyle \frac{x^2}{2!}+\displaystyle \frac{x^4}{4!}-\displaystyle \frac{x^6}{6!}\cdots\\
\end{eqnarray}

$x$に弧度法の角度を入れるとサインとコサインが求まります。

$$x = \displaystyle \frac{\pi}{180}\times 8°=0.139626…$$ $$\sin 8° = 0.139173…$$
$$\cos 8° = 0.990268…$$

これを利用して、$\tan 8° = \displaystyle \frac{\sin 8°}{\cos 8°}$からtanを求められます。

$$\tan 8° = 0.14054…$$

120秒の復習動画|tan 8°

本記事で明らかにした内容を120秒で復習できる動画を準備しました。

お気軽にコメントください! 質問でも、なんでもどうぞ!

タイトルとURLをコピーしました