【集中力】大幅アップの勉強タイマー

【組み合わせ】18C4の求め方【すぐわかる】

18C4を求めると、3060になります。

今回は18C4の計算方法について解説していきます。

目次

18C4の計算とは

18C4の意味は、「18個の中から無作為に4個を選ぶとき、選び方は何通りありますか?」になります。

もし選んだ順番も含めて何パターンあるか考えたい場合は18P4になります。詳しい計算は下記になります

※参考記事
18P4の計算方法

18C4の計算

記事の始めにもお伝えしましたが、18C4=3060になります。

計算は下記の通りです。

$$_{18}C_{4}=\displaystyle \frac{18\times 17\times 16\times 15}{4\times 3\times 2\times 1}=3060$$

分母と分子で同じ数字を約分して消してあげると、計算が簡単になりますね。

計算式の意味

ではなぜ、下記のような計算式になるのでしょうか。

$$_{18}C_{4}=\displaystyle \frac{18\times 17\times 16\times 15}{4\times 3\times 2\times 1}=3060$$

実は分母だけだと順番まで加味した計算になっています。

順番を無視して、何を選んだかだけのパターンを数えるために、$4\times 3\times 2\times 1$の計算で割ることになります。

参考記事

Cの計算自体は下記の記事が参考になります。

※参考記事
[数A]組み合わせの公式|Cの分かりやすい解説【例題付き】

まとめ

今回は18C4の計算を解説してきました。

ここまで読んでいただき、ありがとうございます。

18C4は「18個の中から4個を選ぶとき、何通りのパターンがありますか?」という計算です。

$$_{18}C_{4}=\displaystyle \frac{18\times 17\times 16\times 15}{4\times 3\times 2\times 1}=3060$$

場合の数や確率はパターンを出せたら勝ちです。しっかりやり方を覚えておきましょう!

コメント

コメントする

目次