【集中力】大幅アップの勉強タイマー

【すぐわかる】50の階乗の求め方

今回は50の階乗と求め方を解説していきます。

50の階乗は30414093201713378043612608166064768844377641568960512000000000000で表すと。

この計算方法について紹介していきます。

目次

階乗とは何か?

まず、階乗とは何かを理解していきます。

階乗は、ある自然数nに対して、1からnまでの全ての数を掛け合わせたものです。

つまり、nの階乗は、$n!=n(n-1)(n-2)…3\times2\times1$です。

※参考記事
[数A]階乗|階乗とは、0の階乗が1になる理由も解説

50の階乗

ここから、本題に入りましょう。
nの階乗の式に50を代入して計算していきます。

$$n!=n(n-1)(n-2)…3\times2\times1$$

ここで$n=50$とすると、下記のように計算できます。

$$50!=50\times49\times48\times47\times46\times45\times44\times43\times42\times41\times40\times39\times38\times37\times36\times35\times34\times33\times32\times31\times30\times29\times28\times27\times26\times25\times24\times23\times22\times21\times20\times19\times18\times17\times16\times15\times14\times13\times12\times11\times10\times9\times8\times7\times6\times5\times4\times3\times2\times1=30414093201713378043612608166064768844377641568960512000000000000$$

掛け算を使えば求まるので計算は簡単ですね。

nの値が大きい時は迷わず電卓やエクセルを使いましょう!

まとめ

ここまで読んでいただきありがとうございます。

50の階乗を計算してきました。

nの階乗は、$n!=n(n-1)(n-2)…3\times2\times1$なので、nに代入すれば掛け算だけでも解けますね!

コメント

コメントする

目次