【集中力】大幅アップの勉強タイマー

14の81乗の値と桁数の計算方法【1分でわかる】

14の81乗を求めると、686073887307943297105495230589036722451111294974610014445651956786182470164887566108237758464になります。

計算式は下記になります。

$$14^{81}=686073887307943297105495230589036722451111294974610014445651956786182470164887566108237758464$$

また、$14^{81}$は93桁です。

この記事では$14^{81}$の解き方と、$14^{81}$の桁数の求め方を紹介していきます。

累乗クイズ!

数が大きいのはどっち?

目次

14の81乗の計算

14の81乗は単純に、14を81回掛けた値です。

求める方法としては、基本的にはatai1をatai2回掛けるしか方法はありません。

あとは、google検索が使えることがあります。

ここでgoogleで「14の21乗」と検索すると、計算機が出てきて答えを教えてくれます。
>>検索のリンク<<

実際の検索画面
実際の検索画面

上記の通り累乗の計算は大変ですので、計算結果が何桁になるかだけ求めることもあります。

次は$14^{81}$の桁数を求めてみましょう。

14の81乗の桁数

$14^{81}$を計算すると、93桁の数字になります。

14の81乗の桁数
14の81乗の桁数計算

14の81乗の桁数を求める

実際に求めてみましょう。

14の81乗の常用対数を計算しましょう。

\begin{eqnarray}
\log_{10}14^{81}&=&81 \log_{10}14\\
&=&81\times 1.1461\cdots\\
&=&92.836
\end{eqnarray}

つまり、
$14^{81}=10^{92.836}$と言えるので、$14^{81}$は93桁だと分かります。

桁数の求め方

$14^{81}$の桁数を求めるには、常用対数を使います。

常用対数を使うことで、10の何乗であるかを計算できるため、桁数がわかるのです。

例えば$10^1=10$なので2桁です。
一方で$10^2=100$なので3桁になります。

つまり、$10^a$は$10+1$桁となります。
もし、$a$が小数だった場合は整数部に1を加えた桁数となります。

$a=11.34$なら12桁となります。

累乗の大小クイズ

累乗クイズ!

数が大きいのはどっち?

コメント

コメントする

目次