ここでは25と62の最大公約数を求めるための方法を解説します。
先に結論を書くと、25と62の最大公約数は1です。
どのような計算で最大公約数である1を求めるのか。
そのやり方について説明します!
正解はどっち?
48と72の最大公約数は?
目次
25と62の最大公約数
25と62の最大公約数は1である
25と62の約数、最大公約数を図にすると下記のようになります。

では、具体的に最大公約数を導き出すSTEPを見ていきましょう。
最大公約数の求め方
最大公約数である1を計算するためには、4つのステップが必要です。
25と62の最大公約数を求める4ステップ
- ステップ125の約数を求める
まずは25の約数を求めます。
25の約数:1, 5, 25
25の約数の求め方と約数の個数と和 - STEP262の約数を求める
次に62の約数を導き出します。
62の約数:1, 2, 31, 62
62の約数の求め方と約数の個数と和 - ステップ325と62の公約数を求める
25と62の約数から、同じ約数を探します。
公約数:1
- ステップ4公約数の中で最大の数字を確認する
最大公約数とは、公約数の中で最大の数字のことです。
つまり公約数の中から最も大きい数字を選べば、それが最大公約数となります。
25と62の最大公約数:1
以上のように、最大公約数を求めることができます。
約数の求め方を復習したい場合は下記の記事が参考になります。
最大公約数をもっと知ろう!
最大公約数は分数の約分でも使うのでしっかり理解しておきましょう。
「そもそも最大公約数を求めるのが苦手!」そんな方は、「最大公約数の求め方」が参考になります。
正解はどっち?
48と72の最大公約数は?
コメント