本解説では、cos 213° = -0.838671…を求める方法について解説していきます。
三角関数表の中のコサイン(cos)の表に着目して、値の算出方法を説明していきます。
コサインの表とはこのような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
cos1° | 0.999847 | cos2° | 0.99939 |
cos3° | 0.998629 | cos4° | 0.997564 |
・・・ | ・・・ | ||
cos30° | $\displaystyle \frac{\sqrt{3}}{2}$ | cos45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
cos60° | $\displaystyle \frac{1}{2}$ | cos90° | 0 |
数学の解説などの最後にある三角関数表(コサイン表)ですが、どうやって計算したのでしょうか。
このページでは、cos213°の算出方法紹介です。
$$\cos 213°=-0.838671…$$
10桁のcos 213°を書いてみる
早速ですが、cos 213°を10桁書いてみましょう!$$\cos 213° = -0.838670568 \cdots$$となります。
コサインの表に記載されたこの値を求めていきましょう。
cos213°の値を計算する
三角関数表を参照せずにcos213°の値を解く方法は3つあります。
1のやり方は、定規を使うため正確な値を算出できず、出てくる値は近似値になります。
2のやり方だと、途中の計算が大変になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う手法を説明します。
マクローリン展開でcos213°を求める
マクローリン展開から、下記の式で\(\cos x\)を計算することができます。
$$\cos x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\cos x\)の\(x\)を使うと\(\cos x\)の値を明らかにすることができるのです。
マクローリン展開が何かわからなくても、式だけ分かれば問題ないですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を使う必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 213°$$
この式を計算すると、
$弧度法=3.717551…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\cos 213°\)を求められます。
$$\cos 213° = -0.838671…$$
コメント