【無料】タブレットで楽しく学習する方法【資料請求】

三角関数表のコサインの表におけるcos302°|マクローリン展開で解く

本解説では、cos 302° = 0.529919…を計算する仕方について解き明かしていきます。

三角関数表の中のコサイン(cos)の表に光を当てて、値の求める方法を説明していきます。

コサインの表とはこのような表のことです。

角度角度
cos1°0.999847cos2°0.99939
cos3°0.998629cos4°0.997564
・・・・・・
cos30°$\displaystyle \frac{\sqrt{3}}{2}$cos45°$\displaystyle \frac{1}{\sqrt{2}}$
cos60°$\displaystyle \frac{1}{2}$cos90°0

数学の解説などの最後にある三角関数表(コサイン表)ですが、どうやって求めたのでしょうか。
このページでは、cos302°の計算の仕方紹介です。

$$\cos 302°=0.529919…$$

当サイトは、工学博士トムソンがトムラボという名前で運営しています。
目次

cos 302°を10桁書いてみる

最初に、cos 302°を10桁書いてみましょう!$$\cos 302° = 0.5299192642 \cdots$$となります。
コサインの表に記載されたこの値を求めていきましょう。

cos302°の値を明らかにする

三角関数表を活用せずにcos302°の値を算出する手法は比較的に簡単に求められるものが3つあります。

  1. 分度器を活用して302°を持つ直角三角形を紙で作る
  2. 半角の公式倍角の公式を使って計算する
  3. マクローリン展開に弧度法の角度を代入して求める

1のやり方は、定規を使うため正確な値を算出できず、答えは近似値になります。

2の手法だと、計算がとても複雑になり、虚数まで出てくるためおすすめできません。

そこで今回は3つ目のマクローリン展開を使う方法を解説します。

マクローリン展開でcos302°を求める

マクローリン展開を使うと下記の式で\(\cos x\)を計算することができます。

$$\cos x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$

簡単に言うと、\(\cos x\)の\(x\)によって、\(\cos x\)の値を明らかにすることができるのです。
マクローリン展開が何かわからなくても、式だけ分かれば問題ないですよ。

xには弧度法を使う

ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。

$$弧度法=\displaystyle \frac{\pi}{180}\times 302°$$

この式を計算すると、
$弧度法=5.270894…$となります。

この値をマクローリン展開の\(x\)に代入すると、\(\cos 302°\)を求められます。

$$\cos 302° = 0.529919…$$

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次