【無料】タブレットで楽しく学習する方法【資料請求】

三角関数表のコサインの表におけるcos329°を解く

この記事では、cos 329° = 0.857167…を算出する処理方法について解き明かしていきます。

三角関数表の中のコサイン(cos)の表について、値の算出方法を解説していきます。

コサインの表とは下のような表のことです。

角度角度
cos1°0.999847cos2°0.99939
cos3°0.998629cos4°0.997564
・・・・・・
cos30°$\displaystyle \frac{\sqrt{3}}{2}$cos45°$\displaystyle \frac{1}{\sqrt{2}}$
cos60°$\displaystyle \frac{1}{2}$cos90°0

教科書などの最後にある三角関数表(コサイン表)ですが、どうやって計算したのでしょうか。
本解説では、cos329°の計算の仕方紹介です。

$$\cos 329°=0.857167…$$

当サイトは、工学博士トムソンがトムラボという名前で運営しています。
目次

cos 329° を10桁表す

早速ですが、cos 329°を10桁表してみましょう!$$\cos 329° = 0.8571673007 \cdots$$となります。
コサインの表に記載されたこの値を求めていきましょう。

cos329°の値を計算する

三角関数表を確認せずにcos329°の値を解くやり方は比較的に簡単に求められるものが3つあります。

  1. 分度器を活用して329°を持つ直角三角形を紙で作る
  2. 半角の公式倍角の公式を駆使して計算する
  3. マクローリン展開を活用して解く

1の方法は、定規を使うため正確な値を算出できず、出てくる値は近似値になります。

2の手法だと、計算が大変複雑になり、虚数まで出てくるためおすすめできません。

そこで今回は3つ目のマクローリン展開を使う方法を説明します。

マクローリン展開でcos329°を求める

マクローリン展開から、下記の式で\(\cos x\)を計算することができます。

$$\cos x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$

簡単に言うと、\(\cos x\)の\(x\)が分かれば\(\cos x\)の値を求めることができるのです。
マクローリン展開を聞いたことがなくても、式だけ分かればOKですよ。

xには弧度法を使う

ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。

$$弧度法=\displaystyle \frac{\pi}{180}\times 329°$$

この式を計算すると、
$弧度法=5.742133…$となります。

この値をマクローリン展開の\(x\)に代入すると、\(\cos 329°\)を求められます。

$$\cos 329° = 0.857167…$$

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次