【集中力】大幅アップの勉強タイマー

三角関数表のコサインの表におけるcos343°|マクローリン展開で解く

このページでは、cos 343° = 0.956304…を計算するやり方について解説していきます。

三角関数表の中のコサイン(cos)の表に注目して、値の計算方法を説明していきます。

コサインの表とはこのような表のことです。

角度角度
cos1°0.999847cos2°0.99939
cos3°0.998629cos4°0.997564
・・・・・・
cos30°$\displaystyle \frac{\sqrt{3}}{2}$cos45°$\displaystyle \frac{1}{\sqrt{2}}$
cos60°$\displaystyle \frac{1}{2}$cos90°0

教科書などの最後にある三角関数表(コサイン表)ですが、どうやって算出したのでしょうか。
このページでは、cos343°の求め方解説です。

$$\cos 343°=0.956304…$$

目次

10位までcos 343°を表す

まずは、cos 343°を10桁表してみましょう!$$\cos 343° = 0.9563047559 \cdots$$となります。
コサインの表に記載されたこの値を求めていきましょう。

cos343°の値を解く

三角関数表を使用せずにcos343°の値を算出するやり方は比較的に簡単に求められるものが3つあります。

  1. 分度器を活用して343°を持つ直角三角形を紙で作る
  2. 半角の公式倍角の公式を活用して計算する
  3. マクローリン展開を使って解く

1のやり方は、定規を使うため正確な値を求められず、求まる値は近似値になります。

2の手法だと、計算がとても複雑になり、虚数まで出てくるためおすすめできません。

そこで今回は3つ目のマクローリン展開を使う方法を説明します。

マクローリン展開でcos343°を求める

マクローリン展開から、下記の式で\(\cos x\)を明らかにすることができます。

$$\cos x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$

簡単に言うと、\(\cos x\)の\(x\)によって、\(\cos x\)の値を計算することができるのです。
マクローリン展開って何?って人だったとしても、式だけ分かれば問題ないですよ。

xには弧度法を使う

ただし注意点として\(x\)には弧度法を使う必要があります。
弧度法の角度は下記の式で求めることができます。

$$弧度法=\displaystyle \frac{\pi}{180}\times 343°$$

この式を計算すると、
$弧度法=5.986479…$となります。

この値をマクローリン展開の\(x\)に代入すると、\(\cos 343°\)を求められます。

$$\cos 343° = 0.956304…$$

コメント

コメントする

目次