【無料】数学の遅れを自宅で取り戻す方法【資料請求】

[小6]比の計算と、比と比の値を解説

今回は小学6年生で習う比の計算です。
比の計算方法と、比と比の値を詳しく解説します。

具体例や図を使ってわかりやすく説明していくので、最後まで読んでいただけると嬉しいです。

当サイトは、工学博士トムソンがトムラボという名前で運営しています。
目次

比とは

比とは、ある数とある数の割合を一目でわかるように比較する方法です。

例えば100個のビー玉があったとします。

100個のビー玉を40個のグループAと、60個のグループBにわけます。

グループAとグループBの比率は\(40\)対\(60\)と言います。

書き方は\(40:60\)です。

『40個のグループAと、60個のグループB』と書くより、『\(A:B=40:60\)』と書く方が伝わりますよね。

しかし、比の便利さはもっと上がります。

 

分数の約分のように、同じ数で割れるなら、なるべく割るというルールがあります。

今回の場合だと\(40:60=2:3\)と書く必要があります。

最終的には\(A:B=2:3\)です。かなりスマートになりましたね。

比の計算方法

日常生活でもそうですが、研究をしていると【ある数】決められた比率にわけたい時があります。

試しにリンゴをある比率にわけてみましょう。

【例題】

リンゴが\(32\)個あります。このリンゴを\(3:5\)にわけると何個対何個になるでしょう。

まずは全体がどれくらいの比になるのか計算します。

これは比率を足せばOKです。

\(3+5=8\)ですね。

そしてリンゴの個数を全体で割ることで、\(1\)辺何個になるか計算できます。

\(32\div8=4\)個です。

ここのイメージですが、全部で何グループあって、1グループあたりリンゴは何個になるか計算しています。

問題の比は\(3:5\)であり、1グループあたり\(4\)個だとわかりました。

つまりリンゴ\(32\)個を\(3:5\)でわけると、

\(3\times4=12,\ 5\times4=20\)だとわかります。

比と比の値

次はさっきと逆で、比率がわかっている時の全体の数を求めていきます。

【例題】

ある数のお菓子をAさんとB君に\(4:3\)の比率でプレゼントしました。Aさんは12個もらっていたとき、B君は何個もらったのでしょうか。

これはさっきと逆向きに1グループの数を求めていきます。

Aさんは比率で\(4\)、個数で\(12\)個のお菓子をもらいました。

\(12\div4=3\)なので、比率で\(1\)はお菓子の3個になります。

B君は比率で\(3\)のお菓子をもらっているので、\(3\times3=9\)個のお菓子をもらったことになります。

 

比率は他にも使い道があります。

例えば、料理です。

『酒とみりんを\(1:3\)で入れます。』などはよく聞きますよね。

酒が\(100ml\)ならみりんは\(300ml\)入れる。こんな感じで日常生活でも使います。

3つ以上の比は連比

最後に連比の紹介です。

2:3:4のような3つ以上の比のことを連比(れんぴ)と呼びます。
連比については下記の記事が参考になります。

あわせて読みたい
[小6]連比(れんぴ)とは|3つ比の計算と解き方を解説 今回のテーマは連比(れんぴ)です。 解説する内容はこちら! 解説する内容! 連比とは|3つ以上の比のことである 3つの場合の連比の計算 実力がつく連比クイズ5問 連...
よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次