【無料】数学の遅れを自宅で取り戻す方法【資料請求】

三角関数表のコサインの表におけるcos16°の解き方

この記事では、cos 16° = 0.961261…を求める方法について解説していきます。

三角関数表の中のコサイン(cos)の表に焦点を絞って、値の求める方法を明らかにしていきます。

コサインの表とはこのような表のことです。

角度角度
cos1°0.999847cos2°0.99939
cos3°0.998629cos4°0.997564
・・・・・・
cos30°$\displaystyle \frac{\sqrt{3}}{2}$cos45°$\displaystyle \frac{1}{\sqrt{2}}$
cos60°$\displaystyle \frac{1}{2}$cos90°0

教科書などの最後にある三角関数表(コサイン表)ですが、どうやって計算したのでしょうか。
このページでは、cos16°の計算方法解説です。

$$\cos 16°=0.961261…$$

当サイトは、工学博士トムソンがトムラボという名前で運営しています。
目次

10桁のcos 16°を書いてみる

早速ですが、cos 16°を10桁書いてみましょう!$$\cos 16° = 0.9612616959 \cdots$$となります。
コサインの表に記載されたこの値を求めていきましょう。

cos16°の値を求める

三角関数表を確認せずにcos16°の値を解く方法は大きく3つあります。

  1. 分度器用いて16°を持つ直角三角形を紙で作る
  2. 半角の公式倍角の公式に値を代入して計算する
  3. マクローリン展開に値を代入して解く

1のやり方は、定規を使うため正確な値を算出できず、出てくる値は近似値になります。

2の方法だと、計算過程がとっても煩雑になり、虚数まで出てくるためおすすめできません。

そこで今回は3つ目のマクローリン展開を使う手法を紹介します。

マクローリン展開でcos16°を求める

マクローリン展開を使うと下記の式で\(\cos x\)を計算することができます。

$$\cos x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$

簡単に言うと、\(\cos x\)の\(x\)を代入すると\(\cos x\)の値を求めることができるのです。
マクローリン展開が何かわからなくても、式だけ分かれば大丈夫ですよ。

xには弧度法を使う

ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。

$$弧度法=\displaystyle \frac{\pi}{180}\times 16°$$

この式を計算すると、
$弧度法=0.279252…$となります。

この値をマクローリン展開の\(x\)に代入すると、\(\cos 16°\)を求められます。

$$\cos 16° = 0.961261…$$

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次