それでは、sin 141° = 0.62932…を求める手法について説明します。
三角関数表の中のサイン(sin)の表に焦点を絞って、値の算出方法を紹介していきます。
サインの表とは下ののような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
数学の解説などの最後にある三角関数表(サイン表)ですが、どうやって求めたのでしょうか。
このページでは、sin141°の求める方法解説です。
$$\sin 141°=0.62932…$$
sin 141°を10桁調べる
早速ですが、sin 141°を10桁書いてみましょう!$$\sin 141° = 0.629320391 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin141°の値を明らかにする
三角関数表を使用せずにsin141°の値を算出するやり方はとても複雑なものを除けば3つあります。
1のやり方は、定規を使うため正確な値を算出できず、答えは近似値になります。
2の方法だと、導出過程が大変になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う方法を解説します。
マクローリン展開でsin141°を求める
マクローリン展開を使うと下記の式で\(\sin x\)を明らかにすることができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)を代入すると\(\sin x\)の値を計算することができるのです。
マクローリン展開を聞いたことがなくても、式だけ分かれば問題ないですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 141°$$
この式を計算すると、
$弧度法=2.460914…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 141°\)を求められます。
$$\sin 141° = 0.62932…$$
コメント