それでは、sin 25° = 0.422618…を計算する処理方法について明らかにしていきます。
三角関数表の中のサイン(sin)の表に注目して、値の求める方法を紹介していきます。
サインの表とはこのような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
参考書などの最後にある三角関数表(サイン表)ですが、どうやって求めたのでしょうか。
本解説では、sin25°の算出方法紹介です。
$$\sin 25°=0.422618…$$
sin 25° を10桁調べる
早速ですが、sin 25°を10桁調べてみましょう!$$\sin 25° = 0.4226182617 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin25°の値を明らかにする
三角関数表を使わずにsin25°の値を解く方法は大きく3つあります。
1のやり方は、定規を使うため正確な値を求められず、求まる値は近似値になります。
2のやり方だと、計算過程が大変になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う手法を解説します。
マクローリン展開でsin25°を求める
マクローリン展開より、下記の式で\(\sin x\)を算出することができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)によって、\(\sin x\)の値を算出することができるのです。
マクローリン展開って何?って人だったとしても、式だけ分かればOKですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 25°$$
この式を計算すると、
$弧度法=0.436332…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 25°\)を求められます。
$$\sin 25° = 0.422618…$$
コメント