今回は、sin 287° = -0.956305…を計算する手法について共有します。
三角関数表の中のサイン(sin)の表に着目して、値の計算の仕方を説明していきます。
サインの表とは下ののような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
教科書などの最後にある三角関数表(サイン表)ですが、どうやって導出したのでしょうか。
このページでは、sin287°の求め方紹介です。
$$\sin 287°=-0.956305…$$
sin 287° を10桁書いてみる
初めに、sin 287°を10桁確認してみましょう!$$\sin 287° = -0.956304756 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin287°の値を解く
三角関数表を使わずにsin287°の値を解くやり方は比較的に簡単に求められるものが3つあります。
1のやり方は、定規を使うため正確な値を計算できず、出てくる値は近似値になります。
2の手法だと、計算が大変になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う手法を解説します。
マクローリン展開でsin287°を求める
マクローリン展開を使うと下記の式で\(\sin x\)を明らかにすることができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)から\(\sin x\)の値を算出することができるのです。
マクローリン展開って何?って人だったとしても、式だけ分かればOKですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を入れる必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 287°$$
この式を計算すると、
$弧度法=5.009094…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 287°\)を求められます。
$$\sin 287° = -0.956305…$$
コメント