【集中力】大幅アップの勉強タイマー

三角関数表のサインの表におけるsin290°を簡単導出!

今回は、sin 290° = -0.939693…を計算する手法について解説していきます。

三角関数表の中のサイン(sin)の表に注目して、値の求め方を紹介していきます。

サインの表とは下ののような表のことです。

角度角度
sin1°0.017452sin2°0.034899
sin3°0.052335sin4°0.069756
・・・・・・
sin30°$\displaystyle \frac{1}{2}$sin45°$\displaystyle \frac{1}{\sqrt{2}}$
sin60°$\displaystyle \frac{\sqrt{3}}{2}$sin90°1

教科書などの最後にある三角関数表(サイン表)ですが、どうやって算出したのでしょうか。
本解説では、sin290°の計算の仕方解説です。

$$\sin 290°=-0.939693…$$

目次

sin 290°を10桁調べる

唐突ではありますが、sin 290°を10桁書いてみましょう!$$\sin 290° = -0.9396926208 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。

sin290°の値を求める

三角関数表を使用せずにsin290°の値を解く方法はとても複雑なものを除けば3つあります。

  1. 分度器用いて290°を持つ直角三角形を紙で作る
  2. 半角の公式倍角の公式を活用して計算する
  3. マクローリン展開に値を代入して解く

1の手法は、定規を使うため正確な値を求められず、求まる値は近似値になります。

2のやり方だと、導出過程が大変になり、虚数まで出てくるためおすすめできません。

そこで今回は3つ目のマクローリン展開を使う方法を説明します。

マクローリン展開でsin290°を求める

マクローリン展開によって、下記の式で\(\sin x\)を明らかにすることができます。

$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$

簡単に言うと、\(\sin x\)の\(x\)によって、\(\sin x\)の値を算出することができるのです。
マクローリン展開って何?って人だったとしても、式だけ分かればOKですよ。

xには弧度法を使う

ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。

$$弧度法=\displaystyle \frac{\pi}{180}\times 290°$$

この式を計算すると、
$弧度法=5.061454…$となります。

この値をマクローリン展開の\(x\)に代入すると、\(\sin 290°\)を求められます。

$$\sin 290° = -0.939693…$$

コメント

コメントする

目次