今回は、sin 319° = -0.65606…を電卓で計算するやり方について解き明かしていきます。
三角関数表の中のサイン(sin)の表に注目して、値の求め方を明らかにしていきます。
サインの表とはこのような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
教科書などの最後にある三角関数表(サイン表)ですが、どうやって導出したのでしょうか。
本解説では、sin319°の算出方法解説です。
$$\sin 319°=-0.65606…$$
10位までsin 319°を表す
初めに、sin 319°を10桁確認してみましょう!$$\sin 319° = -0.656059029 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin319°の値を求める
三角関数表を使用せずにsin319°の値を求める手法はとても複雑なものを除けば3つあります。
1のやり方は、定規を使うため正確な値を算出できず、答えは近似値になります。
2のやり方だと、計算がとても複雑になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使うやり方を説明します。
マクローリン展開でsin319°を求める
マクローリン展開より、下記の式で\(\sin x\)を解くことができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)を使うと\(\sin x\)の値を明らかにすることができるのです。
マクローリン展開が何かわからなくても、式だけ分かればOKですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 319°$$
この式を計算すると、
$弧度法=5.5676…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 319°\)を求められます。
$$\sin 319° = -0.65606…$$
コメント