それでは、sin 32° = 0.529919…を電卓で計算する手法について解き明かしていきます。
三角関数表の中のサイン(sin)の表について、値の求め方を解説していきます。
サインの表とは下ののような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
参考書などの最後にある三角関数表(サイン表)ですが、どうやって求めたのでしょうか。
この記事では、sin32°の求め方説明です。
$$\sin 32°=0.529919…$$
10桁のsin 32°を確認
早速ですが、sin 32°を10桁確認してみましょう!$$\sin 32° = 0.5299192642 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin32°の値を算出する
三角関数表を使用せずにsin32°の値を求めるやり方は比較的に簡単に求められるものが3つあります。
1の方法は、定規を使うため正確な値を求められず、求まる値は近似値になります。
2の手法だと、計算過程が非常に複雑になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う方法を紹介します。
マクローリン展開でsin32°を求める
マクローリン展開から、下記の式で\(\sin x\)を求めることができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)を代入すると\(\sin x\)の値を算出することができるのです。
マクローリン展開を聞いたことがなくても、式だけ分かればOKですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 32°$$
この式を計算すると、
$弧度法=0.558505…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 32°\)を求められます。
$$\sin 32° = 0.529919…$$
コメント