この記事では、sin 351° = -0.156435…を求める処理方法について明らかにしていきます。
三角関数表の中のサイン(sin)の表に焦点を絞って、値の求める方法を解説していきます。
サインの表とは下記ののような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
教科書などの最後にある三角関数表(サイン表)ですが、どうやって計算したのでしょうか。
この記事では、sin351°の計算の仕方説明です。
$$\sin 351°=-0.156435…$$
sin 351°を10桁書いてみる
最初に、sin 351°を10桁書いてみましょう!$$\sin 351° = -0.1564344651 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin351°の値を解く
三角関数表を確認せずにsin351°の値を解く手法は比較的に簡単に求められるものが3つあります。
1の手法は、定規を使うため正確な値を算出できず、出てくる値は近似値になります。
2の方法だと、途中の計算がとっても煩雑になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う手法を解説します。
マクローリン展開でsin351°を求める
マクローリン展開から、下記の式で\(\sin x\)を計算することができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)を使うと\(\sin x\)の値を明らかにすることができるのです。
マクローリン展開を知らなくてもても、式だけ分かればOKですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を使う必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 351°$$
この式を計算すると、
$弧度法=6.126105…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 351°\)を求められます。
$$\sin 351° = -0.156435…$$
コメント