それでは、sin 77° = 0.97437…を計算する方法について解き明かしていきます。
三角関数表の中のサイン(sin)の表について、値の算出方法を解説していきます。
サインの表とは下記ののような表のことです。
角度 | 値 | 角度 | 値 |
---|---|---|---|
sin1° | 0.017452 | sin2° | 0.034899 |
sin3° | 0.052335 | sin4° | 0.069756 |
・・・ | ・・・ | ||
sin30° | $\displaystyle \frac{1}{2}$ | sin45° | $\displaystyle \frac{1}{\sqrt{2}}$ |
sin60° | $\displaystyle \frac{\sqrt{3}}{2}$ | sin90° | 1 |
参考書などの最後にある三角関数表(サイン表)ですが、どうやって計算したのでしょうか。
この記事では、sin77°の計算の仕方説明です。
$$\sin 77°=0.97437…$$
sin 77° を10桁調べる
早速ですが、sin 77°を10桁確認してみましょう!$$\sin 77° = 0.9743700647 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。
sin77°の値を算出する
三角関数表を使わずにsin77°の値を解くやり方は大きく3つあります。
1の手法は、定規を使うため正確な値を算出できず、出てくる値は近似値になります。
2の方法だと、導出が大変複雑になり、虚数まで出てくるためおすすめできません。
そこで今回は3つ目のマクローリン展開を使う手法を解説します。
マクローリン展開でsin77°を求める
マクローリン展開より、下記の式で\(\sin x\)を求めることができます。
$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$
簡単に言うと、\(\sin x\)の\(x\)から\(\sin x\)の値を解くことができるのです。
マクローリン展開が何かわからなくても、式だけ分かればOKですよ。
xには弧度法を使う
ただし注意点として\(x\)には弧度法を代入する必要があります。
弧度法の角度は下記の式で求めることができます。
$$弧度法=\displaystyle \frac{\pi}{180}\times 77°$$
この式を計算すると、
$弧度法=1.343903…$となります。
この値をマクローリン展開の\(x\)に代入すると、\(\sin 77°\)を求められます。
$$\sin 77° = 0.97437…$$
コメント