【無料】数学の遅れを自宅で取り戻す方法【資料請求】

三角関数表のサインの表におけるsin91°を簡単導出!

このページでは、sin 91° = 0.999847…を三角関数表を使わずに求めるやり方について共有します。

三角関数表の中のサイン(sin)の表について、値の算出方法を明らかにしていきます。

サインの表とは下ののような表のことです。

角度角度
sin1°0.017452sin2°0.034899
sin3°0.052335sin4°0.069756
・・・・・・
sin30°$\displaystyle \frac{1}{2}$sin45°$\displaystyle \frac{1}{\sqrt{2}}$
sin60°$\displaystyle \frac{\sqrt{3}}{2}$sin90°1

数学の解説などの最後にある三角関数表(サイン表)ですが、どうやって計算したのでしょうか。
このページでは、sin91°の求め方説明です。

$$\sin 91°=0.999847…$$

当サイトは、工学博士トムソンがトムラボという名前で運営しています。
目次

sin 91°を10桁表す

初めに、sin 91°を10桁確認してみましょう!$$\sin 91° = 0.9998476951 \cdots$$となります。
サインの表に記載されたこの値を求めていきましょう。

sin91°の値を明らかにする

三角関数表を活用せずにsin91°の値を算出する手法は3つあります。

  1. 分度器を使用して91°を持つ直角三角形を紙で作る
  2. 半角の公式倍角の公式を活用して計算する
  3. マクローリン展開を使って解く

1のやり方は、定規を使うため正確な値を計算できず、求まる値は近似値になります。

2のやり方だと、導出過程が非常に複雑になり、虚数まで出てくるためおすすめできません。

そこで今回は3つ目のマクローリン展開を使う手法を解説します。

マクローリン展開でsin91°を求める

マクローリン展開によって、下記の式で\(\sin x\)を計算することができます。

$$\sin x = x-\displaystyle \frac{x^3}{3!}+\displaystyle \frac{x^5}{5!}-\displaystyle \frac{x^7}{7!}\cdots\\$$

簡単に言うと、\(\sin x\)の\(x\)から\(\sin x\)の値を求めることができるのです。
マクローリン展開って何?って人だったとしても、式だけ分かればOKですよ。

xには弧度法を使う

ただし注意点として\(x\)には弧度法を入れる必要があります。
弧度法の角度は下記の式で求めることができます。

$$弧度法=\displaystyle \frac{\pi}{180}\times 91°$$

この式を計算すると、
$弧度法=1.588249…$となります。

この値をマクローリン展開の\(x\)に代入すると、\(\sin 91°\)を求められます。

$$\sin 91° = 0.999847…$$

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次