\(Cos^{-1}x\)(アークコサイン)の微分$$(Cos^{-1}x)’=-\frac{1}{\sqrt{1-x^2}}$$
逆三角関数であるアークコサインですが、これを微分するには少しテクニックがいります。そこでこの解説では、簡単にできるアークコサインの微分の方法を紹介します!

この微分には逆関数の微分法を使うよ!
逆関数の微分法$$g'(x)=\frac{1}{f'(y)} (※ただしf'(y) \neq 0)$$
≫逆関数の微分について詳しい解説!【逆関数の例も記載】≪
逆三角関数(アークコサイン)の導関数(微分)
$$y=Cos^{-1}x$$
とすると、これは逆三角関数なので
$$x=\cos y \dots(1)$$
と同じ意味になります。ここで(1)式の両辺をxで微分します。
$$\begin{eqnarray}
\frac{d}{dx}x &=& \frac{d}{dx}\cos y \\
1 &=& \frac{d}{dy}\cos y\frac{dy}{dx}(合成関数の微分法)\\
1 &=& -\sin y \frac{dy}{dx}\\
\end{eqnarray}$$
となります。つまり
$$\frac{dy}{dx}=-\frac{1}{\sin y} (※ただし\sin y \neq 0)$$
となります。これで微分できたように見えますが、\(\sin y\)には\(y\)が使われています。この\(y\)を無くさないと微分できたとは言えません。そこで、\(\sin y\)変形して\(x\)の関数にします。
\(\sin y\)を変形する
\(\sin y\)を変形するために、少しだけテクニックを使います。
具体的にはこの公式。この公式を\(\sin y=\)の形にしてやると・・・
$$\sin y=\sqrt{1-\cos^2 y}$$
さらに最初に示した通り、この問題は逆三角関数なので
$$y=Sin^{-1}x \leftrightarrow x=\sin y$$
この式から\(\sin y\)と\(x\)が等しいことが分かりますね。ここまで出てきた式を使ってまとめると・・・
$$\begin{eqnarray} \frac{dy}{dx}&=& -\frac{1}{\sin y} \\
&=& -\frac{1}{\sqrt{1-\cos^2 y}}\\
&=& -\frac{1}{\sqrt{1-x^2}}\end{eqnarray}$$
ようやく微分完了です!
\(Cos^{-1}x\)(アークコサイン)の微分$$(Cos^{-1}x)’=-\frac{1}{\sqrt{1-x^2}}$$

微分完了!
最初に逆関数の微分法を使うといいましたが、その方法でもやってみましょう!
逆三角関数の微分法でやってみる
逆関数の微分法$$g'(x)=\frac{1}{f'(y)} (※ただしf'(y) \neq 0)$$
≫逆関数の微分について詳しい解説!【逆関数の例も記載】≪
ここで\(g(x)=Cos^{-1}x\)、\(f(y)=\cos y)\)です!
$$y=Cos^{-1} \leftrightarrow x=\cos y$$
$$y=g(x) \leftrightarrow x=f(y)$$
式を微分して当てはめると・・・
$$g'(x)=\frac{1}{f'(y)}=-\frac{1}{\sin y}$$
となります。あとは\(\sin y\)を同じように変形すればいいだけです。
$$\begin{eqnarray} \frac{dy}{dx}&=& -\frac{1}{\sin y} \\
&=& -\frac{1}{\sqrt{1-\cos^2 y}}\\
&=& -\frac{1}{\sqrt{1-x^2}}\end{eqnarray}$$
この方法であれば、合成関数の微分法なんかを使わなくてもできるので楽ですね!
さいごに
3種類ある逆三角関数ですが、その他の微分のも求め方はほとんど同じです。求め方は大きく2種類あります。
- 合成関数の微分法を使う
- 逆関数の微分法を使う
です。
分かってしまえば意外と簡単なので、今のうちに覚えておきましょう!
コメント